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Abstract 

Cancer cell lines are foundational tools in preclinical research, yet many fail to form tumors in 

xenograft models, limiting their translational utility. To address this gap, bulk RNA sequencing 

data was integrated with experimentally validated tumorigenicity outcomes to identify 

transcriptomic features associated with successful xenograft formation. Differential expression 

analysis uncovered key genes distinguishing tumorigenic from non-tumorigenic lines. Using 

these features, we trained a logistic regression classifier that achieved a median test set accuracy 

of 0.84 (84% CI: [0.78, 0.90]) across 1,000 bootstrapped samples. From our model, this 

approach introduces a new dimension for prioritizing cell lines based on their likelihood of 

forming tumors in vivo. These findings offer a practical framework for enhancing model 

selection and improving the translational relevance of cancer research. 
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Background  

Preclinical models are important tools in cancer research, acting as a bridge between 

laboratory discoveries and clinical advancements. Among these models, cancer cell lines offer a 

widely accessible and reproducible platform for studying tumor biology and screening 

therapeutic compounds. However, their utility is limited by the environment of cell culture 

systems which fail to replicate the complexity of an in vivo tumor microenvironment. Factors 

such as the composition of basal media, absence of systemic signals like cytokines, and the lack 

of interactions between malignant and surrounding stromal or immune cells all contribute to 

inherent biases in cell line research. These shortcomings highlight the need for more 

representative systems in cancer modeling.   

To address these limitations, researchers have utilized xenograft models, where human 

cancer cell lines or tumor samples are transplanted into immunocompromised mice. Xenograft 

models, including cell line-derived xenografts (CDX) and patient-derived (PDX), provide a more 

physiologically relevant system to study tumor biology and evaluate drug efficacy (Zanella et al., 

2022). By mimicking the cellular and molecular dynamics of human tumors in vivo, these 

models provide valuable insights into disease mechanisms.   

However, an important challenge persists: many cancer cell lines are unable to establish 

tumors when transplanted into xenograft mice. This phenomenon, which is observed across 

multiple cancer types, highlights fundamental gaps in our understanding of tumorigenesis in 

xenografts.  

To address this, the goal of this project is to identify molecular and cellular biomarkers 

that can predict a cancer cell line's ability to establish xenografts. Such insights could guide 
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experimental modifications to improve the likelihood of engraftment, providing researchers with 

more reliable tools for studying cancer progression and therapeutic response.  

Through a combination of transcriptomic profiling, enrichment analyses, predictive 

modeling, and comparative analyses with patient tumor data, we aim to investigate the 

determinants of engraftment in xenograft systems. First, we will identify transcriptomic 

differences between engrafting and non-engrafting cell lines, leveraging published datasets to 

find differentially expressed genes (DEGs) and enriched pathways. The Cancer Cell Line 

Encyclopedia (CCLE) from the DepMap resource provides transcriptomic profiles of hundreds 

of cancer cell lines and enables integrated exploration of gene expression patterns and functional 

genomic data. Additionally, we incorporated data from Jin et. al (2020), which provides 

experimental evidence linking engraftment potential with cancer cell lines.  

 Next, we aim to predict the engraftment potential of cell lines using computational 

approaches, such as machine learning methods, to nominate cell lines for experimental 

validation. Finally, we will extend these findings to human patient tumor scRNA-seq data, 

exploring whether subpopulations of malignant cells resemble the gene expression profiles of 

engrafting versus non-engrafting cell lines. This approach hopes to learn more about the 

molecular drivers of xenograft compatibility, inform future xenograft model development, and 

bridge the gap between preclinical models and patient-derived tumor biology.  

 

Methods  

Differential Expression & Enrichment   

To investigate the transcriptomic differences between cancer cell lines with varying 

engraftment potentials in xenograft models, we utilized the dataset from Jin et al. (2020). The 
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study featured a dataset of 488 barcoded cancer cell lines, which were subcutaneously injected 

into immunodeficient mice to evaluate engraftment success. Barcode abundance was measured 

pre- and post-injection to evaluate engraftment success. This approach enabled a categorization 

of cell lines into engrafting and non-engrafting groups based on their ability to form tumors in 

vivo. 

To address differential expression and enrichment analyses, raw RNA-seq read counts 

was obtained from the Cancer Cell Line Encyclopedia (CCLE). Specifically, the dataset used 

was the CCLE RNA-seq gene counts file (CCLE_RNAseq_genes_counts_20180929.gct). Using 

the pyDESeq2 v0.5.2 Python package (Muzellec et al., 2023), we performed differential gene 

expression analysis between the two groups of cell lines. The tool enables analysis of bulk RNA-

seq data using methods adapted from the R DESeq2 package. After identifying DEGs, a 

literature review was conducted to contextualize our findings and verify the potential relevance 

of the observed gene expression differences in the context of tumorigenesis.  

We proceeded with gene set enrichment analysis (GSEA) using the fgsea v3.21 package 

in R (Korotkevich, 2019) to determine which biological pathways were significantly enriched 

among the DEGs. The human Hallmark Gene Set was used for this analysis and was obtained 

from the Human MSigDB Collections (Liberzon et al., 2015). Both data processing and 

differential expression analyses were repeated twice, initially using the base dataset and 

subsequently incorporating location as a covariate.  

 

Model Development  

We leveraged five statistical and machine learning techniques to predict the engraftment 

potential of cell lines and classify cell lines based on observed gene expression profiles. First, we 
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performed feature engineering by filtering the DEGs used for training the models based on their 

average TPM (transcripts per million) values, retaining only genes with average TPM > 1 to 

ensure biologically meaningful features. The TPM values were obtained from the Cancer Cell 

Line Encyclopedia (OmicsExpressionProteinCodingGenesTPMLogp1BatchCorrected.csv). 

Next, we selected appropriate models for regression and classification tasks, including 

Linear Regression, Random Forest Regression, Logistics Regression, Random Forest 

Classification and Naïve Bayes. The scikit-learn v1.7 library was used to train these models 

(Pedregosa, 2011) and the curated data was divided into training and validation sets using an 

80/20 train-test split. Each model was trained on the training set and validated for its 

performance on the validation set, with hyperparameter tuning conducted where necessary to 

optimize predictive power. 

 To evaluate model performance, we utilized various metrics to ensure accuracy and 

reliability. Specifically, we compared overall accuracy between models and visualized confusion 

matrices to assess the proportion of correct classifications versus misclassifications. 

Additionally, receiver operating characteristic (ROC) curves were generated to evaluate the 

models’ ability to distinguish between classes and to compute the area under the curve (AUC) 

for further comparative analysis of predictive performance (Extended Figure 2, 3). These metrics 

provided a comprehensive overview of model performance for both regression and classification 

tasks. 

Breast Cancer scRNA-seq Atlas   

We analyzed single-cell RNA sequencing (scRNA-seq) data from human breast cancer 

tumors derived from three studies (Bassez et al., 2021, Subramanian et al., 2005, Qian et al., 

2020).  
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The genes identified from the logistic regression model were applied to single-cell RNA 

sequencing (scRNA-seq) data from human breast cancer tumors to identify malignant epithelial 

subpopulations with varying engraftment potential. We identified genes with positive and 

negative coefficients from our logistics regression model. Using these gene sets, we calculated 

signature scores using computational tools from the Scanpy library v1.1 to assess how well the 

transcriptional profiles of the cells align with specific phenotypes such as high or low 

engraftment capacity.  

First, the CCLE log-transformed TPM dataset was preprocessed to ensure only genes 

with TPM values > 1 were retained and batch effects were corrected for comparability across 

samples. We employed the `sc.tl.score_genes` function from Scanpy (Wolf et al., 2018) to 

calculate signature scores. These scores were computed for each gene set (positive and negative) 

across all cells using the specified expression layer (`layer="log2_couns_scvi"`) from an 

AnnData object.  

A positive marker score represents the activity level of genes associated with high 

engraftment capacity in each cell while a negative marker score represents the activity level of 

genes associated with low engraftment capacity in each cell. The ratio (difference) between the 

positive and negative scores were computed cell by cell which quantifies the balance between the 

transcriptional signals supporting high vs. low engraftment. 

To assess the statistical relevance of the observed signatures, a random control was 

generated. A vector of random ‘positive-negative’ score differences was created by repeatedly 

(20 iterations) selecting random subsets of the gene set and computing their difference scores. 

This control helps account for biases introduced by gene set size, variability, or technical noise.  
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Using the computed signature scores, UMAPs were plotted (‘sc.pl.umap’) to visualize the 

actual gene set ratios and the average random difference.  

 This approach captured both inter-tumor (between patients) and intra-tumor (within a 

single tumor) heterogeneity, providing deeper insights into the cellular states and molecular 

programs most likely to drive tumorigenesis.  

 

 

 

 

 

 

 

 

 

Figure 2. Graphical summary of methods 
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Results  

The distribution of engrafted and non-engrafted cell lines from the Jin et al. (2020) 

dataset is illustrated in Figure 1, which also depicts the measured engraftment potential of the 76 

cell lines that successfully formed tumors. 

 

 

 

 

 

 

 

 

 

Figure 1: Distribution of Engraftment Scores. (A) Counts of non-engrafted and engrafted cell lines from 

the dataset. (B) The distribution of engraftment potential that did engraft, ranging from -3 to +2. 

 

Differential Expression & Enrichment   

The analysis of differential gene expression and gene set enrichment has yielded insights 

into the molecular biomarkers associated with the engraftment potential of cancer cell lines. 

These findings are presented as a volcano plot seen in Figure 3, which incorporates a location 

covariate, and in Extended Figure 1, where the covariate is excluded. The location covariate was 

added to account for potential variability that could influence gene expression patterns and 

engraftment outcomes. 

A B 
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Figure 3. Differential Gene Expression and Pathway Analysis with Location Covariate (A) Volcano 

plot showing significantly upregulated and downregulated genes. (B) Gene set enrichment analysis 

reveals upregulation of the MYC signaling pathway and downregulation of the KRAS signaling pathway. 

Specific genes such as CXCL12, HGF, FGL1, KISS1, OR7E19P, MIR4280HG, and 

FAM9C were significantly upregulated or downregulated. HGF, KISS1, FAM9C, OR7E19P, 

and MIR4280HG were identified as significantly upregulated genes in cell lines with higher 

engraftment potential. HGF, in combination with insulin-like growth factor 2 (IGF2), has been 

reported to drive tumorigenesis in epithelial ovarian cancer (Chu et al., 2023). Upregulation of 

KISS1 signaling has been shown to promote tumor growth in estrogen receptor-negative breast 

cancer (TNBC) and hepatocellular carcinoma (Dragan et al., 2020). Similarly, FAM9C is 

frequently overexpressed in human hepatocellular carcinoma (Zhou et al., 2013). Conversely, 

CXCL12 was markedly downregulated in cell lines with higher engraftment potential. Reduced 

CXCL12 expression is a well-established feature of acute myeloid leukemia (AML) and other 

hematopoietic neoplasms. (Wang et al., 2021). To date, there is no published literature 

implicating OR7E19P or MIR4280HG as contributors to tumorigenesis.  
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Gene Set Enrichment Analysis  

The results of gene set enrichment analysis (GSEA), showcasing the normalized 

enrichment scores (NES) for various pathways, are highlighted in Figure 3B. This analysis 

underscores the functional pathways activated or suppressed in cell lines with different 

engraftment potential. Pathways such as MYC targets V1 and V2, E2F targets, G2M checkpoint, 

and mitotic spindle are highly enriched in cell lines that successfully engraft. These pathways are 

associated with cell proliferation, survival, and growth which are critical components of 

tumorigenesis. Conversely, pathways including myogenesis, epithelial-to-mesenchymal 

transition (EMT), interferon gamma response, TNFα signaling via NF-kB, KRAS signaling, and 

coagulation are among the most suppressed. These pathways are related to differentiation, 

inflammatory responses, and cell migration, which might inhibit tumor growth in xenografts.  

Model Development  

Using the differentially expressed genes identified from the previous analysis, various 

machine learning approaches were employed to predict the engraftment potential of cancer cell 

lines. We initially evaluated both classification and regression frameworks to determine the 

optimal modeling strategy.  

The accuracy of various classification and regression models across a range of DEGs is 

presented in Figure 4. The classification models (Logistic Regression, Random Forest, and Naive 

Bayes) consistently exhibited superior performance compared to their regression counterparts. 

Logistic Regression and Random Forest maintained accuracy above 0.85 across most DEG sets, 

while Naive Bayes demonstrated stable performance exceeding 0.80. In contrast, Linear 

Regression and Random Forest Regressor showed worse performance, with weaker accuracy and 

instability seen with fluctuating scores across DEG ranges. These results indicated that 
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classification approaches were better suited for predicting engraftment potential than regression-

based methods.  

Building on these findings, we next optimized feature selection and compared 

classification model performance. After the models were trained, they were tested on all cancer 

cell lines in the CCLE (n = 1673). The effect of increasing the number of DEGs on model 

performance is shown in the data (Figure 5), with the number of predicted engrafted cell lines 

plotted against the number of DEGs used. As feature dimensionality increased, the Random 

Forest classifier exhibited signs of overfitting when DEG counts exceeded 100, seen by declining 

performance and increasingly unstable predictions with larger feature sets. Conversely, both 

Logistic Regression and Naive Bayes models maintained stable predictions across varying 

numbers of DEGs. The choice of 100 DEGs as our optimal feature set was determined when 

observing that model accuracy plateaued at approximately this threshold for both Logistic 

Regression and Naive Bayes classifiers (Supplementary Table 1). Additional features beyond 

100 DEGs provided diminishing returns in predictive power while introducing the risk of 

overfitting. The list of predictions from the Logistics Regression and Naïve Bayes with 100 

DEGs models are seen in Supplementary Table 2.  

Model performance was validated using an independent dataset of 200 cancer cell lines 

from Novartis internal records, comprising 174 cell lines that successfully established CDX 

models and 26 that failed to engraft. The comparison of prediction scores between successful and 

failed engraftment cases using the Logistic Regression and Naive Bayes models with 100 DEGs 

is shown in Figure 6. In Figure 6A, the Logistic Regression model yields significantly higher 

prediction scores for cell lines that successfully induced CDX models (Engraft Yes) compared to 

those that failed (Engraft No; p = 0.007), supporting its reliability in distinguishing engraftment 
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potential. Analogous results for the Naïve Bayes model are seen in Figure 6B, which similarly 

differentiates successful engraftments with elevated scores (p = 0.012). These findings 

demonstrate that both models, when trained on 100 DEGs, can reliably predict engraftment 

potential in an independent validation cohort.  

 

 

 

 

 

 

 

 

Figure 4. Model 

Accuracy by DEG Range. A classification target of engraftment yes/no and a regression target of 

engraftment potential were used with a threshold set at -3.86 (mean value of the training data). 
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Figure 5. Predicted Engraftment of CCLE Cell Lines (n = 1,673) by DEG Range. The dotted line 

indicates the expected number of predicted engrafted lines (n = 261) based on the proportion of engrafted 

samples in the training set (15.6%, 76 out of 488 cell lines).  

 

 

 

 

 

 

 

Figure 6. Boxplots of the validation of prediction scores for successful and failed CDX models using 

Novartis internal records for (A) Logistics Regression (p = 0.007) and (B) Naïve Bayes (p = 0.012) with 

100 DEGs. 

A B 
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Breast Cancer scRNA-seq Atlas  

In the final part of our project, we leveraged single-cell RNA sequencing (scRNA-seq) 

data to directly examine patient tumor samples, with a focus on identifying subpopulations of 

malignant cells that exhibit varying engraftment signature scores. This analysis was particularly 

aimed at exploring the engraftment potential across different molecular subtypes of breast cancer 

epithelial cells (Figure 7A).  

 

 

 

 

 

 

 

 

 

Figure 7. Gene Signature Score in Epithelial Cells and Fibroblasts. (A) Gene signature score derived 

from filtered DEGs suggest clusters with higher engraftment potential. (B)  Cells colored by 

breast cancer molecular subtype. 

Discrete epithelial clusters were observed with elevated scores, suggesting that 

tumorigenic programs are not uniformly expressed but confined to transcriptionally distinct 

cellular states. A subset of fibroblasts also exhibits higher scores, which could reflect stromal 

programs that facilitate engraftment. The same manifold colored by breast cancer subtypes is 

shown in Figure 7B, however the engraftment potential does not clearly correlate with any 

specific subtype. 

A B Engraftment Signature Score 
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These findings suggest that engraftment potential in breast cancer xenograft models is 

characterized by specific cellular clusters rather than distinct molecular subtypes. Our scRNA-

seq analysis provided critical insights into the cellular heterogeneity within patient tumors and 

identified specific subpopulations of epithelial cells with high engraftment potential. These 

findings pave the way for several future directions such as validating high-potential epithelial 

clusters in xenograft models and applying these methodologies to scRNA-seq data from other 

cancer types to explore subpopulation variations in engraftment potential. Additional scRNA-seq 

findings can be integrated with patient clinical outcomes to enhance the relevance of engraftment 

signatures in therapeutic and prognostic applications.  

Discussion   

This study provides novel insights into the molecular determinants of xenograft 

compatibility through integrated transcriptomic analysis and machine learning approaches. Our 

findings advance understanding of tumor engraftment in three key areas: identification of 

predictive biomarkers, development of robust classification models, and characterization of 

cellular heterogeneity in engraftment scores in patient tumors.  

Our differential expression analysis revealed distinct transcriptomic signatures that 

distinguish engrafting from non-engrafting cancer cell lines. The upregulation of genes such as 

HGF, KISS1, and FAM9C in successfully engrafting lines aligns with established roles of these 

factors in promoting tumorigenesis and cell survival. Conversely, the downregulation of 

CXCL12 in engrafting lines is consistent with its known association with poor prognosis in 

hematologic malignancies. The enrichment of MYC signaling pathways and cell cycle 

progression programs in engrafting lines further supports the concept that proliferative capacity 

is a critical determinant of xenograft success, while the suppression of differentiation and 
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inflammatory response pathways may facilitate tumor establishment in the immunocompromised 

environment.  

The superior performance of classification over regression approaches emonstrates that 

engraftment potential is best conceptualized as a binary outcome rather than a continuous 

variable. Our systematic optimization identified 100 DEGs as the optimal feature set, balancing 

predictive accuracy with biological interpretability while avoiding overfitting. The statistical 

significance of model predictions in distinguishing successful from failed engraftments (p < 0.05 

for both Logistic Regression and Naive Bayes) from internal Novartis data provides confidence 

in the clinical utility of this approach. These models offer researchers a data-driven framework 

for prioritizing cell lines most likely to succeed in xenograft studies, potentially reducing 

experimental costs and improving research efficiency.  

The application of our engraftment signatures to single-cell breast cancer data revealed 

notable heterogeneity in predicted engraftment potential, an observation that underscores the 

complexity of tumor biology. We found that specific epithelial clusters exhibited enriched high 

engraftment scores, which was independent of molecular subtype classification. This aligns with 

clinical observations of differential xenograft take rates and suggests that our transcriptomic 

signatures effectively capture biologically relevant differences in tumorigenic potential that 

translate from cell line models to patient tumor biology. 

Several limitations warrant consideration. Our reliance on a single primary dataset (Jin et 

al.) for model training may introduce dataset-specific biases and limit generalizability across 

different experimental conditions. The significant class imbalance (15.6% engraftment rate) in 

our training data poses inherent challenges for minority class prediction, though our external 

validation suggests adequate model performance despite this limitation. Our transcriptomic 
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approach, while comprehensive, captures only gene expression patterns and does not account for 

post-translational modifications, epigenetic factors, or metabolic states that may critically 

influence engraftment success.  

The immediate translational value of this work lies in providing the research community 

with validated tools for cell line selection in xenograft studies. The methodological framework 

developed here can be readily extended to other cancer types. Such expansion would enhance the 

utility of predictive modeling across diverse tumor types and provide insights into tissue-specific 

mechanisms of tumorigenesis.  

Conclusion   

This study successfully identified molecular biomarkers that determine cancer cell line 

engraftment potential in xenograft models through integrated transcriptomic analysis and 

machine learning. Our differential expression analysis revealed distinct gene signatures 

associated with successful engraftment, including upregulation of proliferative pathways and 

downregulation of differentiation programs. The Logistic Regression classifier, optimized with 

100 differentially expressed genes, achieved robust predictive performance with external 

validation confirming its reliability across 200 independent cell lines.  

Extending these findings to patient tumor biology, our single-cell RNA sequencing 

analysis demonstrated that engraftment signatures capture clinically relevant heterogeneity 

across epithelial cells. This translation from cell line models to patient samples validates the 

biological relevance of our approach and suggests broader applicability to understanding tumor 

biology.  
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The practical impact of this work lies in providing the cancer research community with 

validated, data-driven tools for optimizing xenograft model selection. By enabling researchers to 

prioritize cell lines with higher likelihood of successful engraftment, our approach promises to 

improve experimental efficiency, reduce costs, and enhance the translational relevance of 

preclinical studies. The framework established here creates a foundation for extending predictive 

modeling to other cancer types and patient-derived xenograft systems, ultimately advancing our 

understanding of tumorigenesis and improving cancer therapeutic development. 
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Extended Figures  

Extended Figure 1. Differential Gene Expression and Pathway Analysis (without location as a 

covariate) (A) Volcano plot showing significantly upregulated, downregulated genes. (B) Gene set 

enrichment analysis reveals upregulation of the MYC signaling pathway and downregulation of the EMT 

pathway. 

Extended Figure 2. Confusion Matrices of (A) Random Forest, (B) Logistics Regression, and (C) 

Naïve Bayes models  
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Extended Figure 3. ROC Curves with AUC values of (A) Random Forest, (B) Logistics Regression, 

and (C) Naïve Bayes models  

 

 

 

 

 

 

Extended Figure 4. Gene Signature Score in Epithelial Cells and Fibroblasts. (A) Gene signature 

score derived from breast-specific DEGs suggest clusters with higher engraftment potential. (B)  Cells 

colored by breast cancer molecular subtype. 
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Extended Figure 5. Boxplot of Engraftment Signature Score by Patient ID (A) derived from 

filtered DEGs and (B) with random control. 
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